Extensions 1→N→G→Q→1 with N=C32xA4 and Q=C3

Direct product G=NxQ with N=C32xA4 and Q=C3
dρLabelID
A4xC33108A4xC3^3324,171

Semidirect products G=N:Q with N=C32xA4 and Q=C3
extensionφ:Q→Out NdρLabelID
(C32xA4):1C3 = He3:2A4φ: C3/C1C3 ⊆ Out C32xA4369(C3^2xA4):1C3324,55
(C32xA4):2C3 = C62.6C32φ: C3/C1C3 ⊆ Out C32xA4369(C3^2xA4):2C3324,58
(C32xA4):3C3 = A4xHe3φ: C3/C1C3 ⊆ Out C32xA4369(C3^2xA4):3C3324,130
(C32xA4):4C3 = C3xC32:A4φ: C3/C1C3 ⊆ Out C32xA454(C3^2xA4):4C3324,135

Non-split extensions G=N.Q with N=C32xA4 and Q=C3
extensionφ:Q→Out NdρLabelID
(C32xA4).1C3 = C62.16C32φ: C3/C1C3 ⊆ Out C32xA4108(C3^2xA4).1C3324,52
(C32xA4).2C3 = C3xC9:A4φ: C3/C1C3 ⊆ Out C32xA4108(C3^2xA4).2C3324,127
(C32xA4).3C3 = A4x3- 1+2φ: C3/C1C3 ⊆ Out C32xA4369(C3^2xA4).3C3324,131
(C32xA4).4C3 = A4xC3xC9φ: trivial image108(C3^2xA4).4C3324,126

׿
x
:
Z
F
o
wr
Q
<